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Aim of this paper is the investigation of dynamics of a system comprising an arbitrary 
number of spheres interacting by means of direct and central but not completely elastic 
impacts. We assume that in the intervals between impacts each sphere has only one 
“linear” degree of freedom and moves in a force field obeying a known law. External 
perturbation which is also assumed known is nonindependent, and is applied to the extreme 

spheres of the system. The problem considered is of interest when investigating the 

behavior of a layer of granular substance in a vibrating vessel [l] and in connection with 

some other technical applications (2% 
Statistical averaging of motion of the system and its consequent global treatment 

within the framework of statistical mechanics poses fundamental difficulties, since the 
system has no integral invariant and its phase volume is not constant, Therefore, in the 
following, a deterministic approach will be adopted and only small neighborhoods of 

periodic modes possessing well defined selected properties will be investigated. From 

the very beginning the problem will have to be severely restrained by specifying the 

character of motion under investigation very accurately. The class of regular motions 
studied below exhibits a characteristic feature; during the process of motion the t th 

sphere collides, in turn, with the preceding and the following sphere. Thus we exclude, 
for example, the situation when the tth sphere collides with the ( t - l)-th sphere twice 

in succession. However, any other reasonable scheme of motion could be adopted. 
Regular periodic motions are found by means of point transformations [3], but transfor- 

mations themselves are treated as partial difference equations and form a starting point 
for subsequent, purely analytical treatment of the problem, 

1, Gen@ral formulrtion of the problrm, We shall divide the process 
of regular motions taking place in the system, into intervals and each interval will char- 
acterize a single transmission of an impulse from the first, extreme left-hand sphere to 
the last, 72th sphere, We shall denote the intervals by k = 1,2,. . . , 0~ , but they will 
not be related to any period of time, and coincidence of intervals will not imply simul- 
taneity in time. Regular motion on the kth sphere of the system ( t = 1,. . . , n) will be 
completely described by the following parameters : U1, which is the initial velocity 
of a sphere after its collision with the ( t + 1)-th sphere during the kth transmission of 
impulse ; Vi k which is the initial velocity of a sphere after its collision with the (&- 1)th 
sphere during the kth transmission of impulse; Tik and $i k which are the durations of 
collisionless motion of a sphere in the reverse and forward direction respectively. 

Magnitudes of final velocities of the spheres i, e. of their velocities immediately 
before the collision and lengths of paths in forward and reverse directions can, by virtue 
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of the integrability of equations of motion of a sphere in the intervals between collisions, 

be completely defined provided that the corresponding initial velocities and time inter- 
vals are given (13, 

vikt = vik+ (u IX, tik), Uiki = U.ki. bik, 
Fig, 1 gives a schematic illustration of 

Fig. 1 

rik), Sik = Sik (Vik, tik)v lik = lik (uik, r;k) 
the process of regular motion. 

Total time of transmission of a single 
impulse along the length of the system from 

left to right or, in other words, duration of an 

interval, is equal to 

i$ = tlk + . . . +t,, 

All the quantities introduced previously 
must be basically nonnegative if regular 

motions are to take place in the system, 

otherwise the process of subdivision of motion 
into intervals becomes impossible. Moreover, 

other exact relations must also be fulfilled, namely the conditions of compatibility of 

motion in space and time (Fig. 1) 

silr + li-1. It+1 = li, P-!-l + si-1, kilt tjk + ri,k+l = fi-l,k+l + ti-l,k+l (1.2) 

Finite relations (1.1) and (1.2) together with equations describing an imperfectly elas- 
tic collision 

(1.3) 
mi-1Vi-1, k+ -miu:l,i. = - mi-l,ui-1, k+l+ mivik, Ri (Q-I, k+ +Uik+) =Uik+~i-_l.k+I’ 

where ?/‘Zi is the mass of the tth sphere and 0 <Ai < 1 is the coefficient of restitution 

during the impact of the $th sphere on the (5 -l)-th sphere, represent a closed system 

of nonlinear partial difference equations and define the motion completely, provided 
that the boundary conditions of motion of the extreme spheres of the system which are 

under direct influence of external forces, are known, together with the initial conditions 
characterizing the state of the system during the first transmission of impulse (i. e. during 

the first interval). In its general form however, this system can only be utilized for 

numerical methods. Analytical approach requires further simplification and more con- 
cise formulation of the problem. 

2, Simplest prsiodic motion8 of a free ryrtem in 1 limited 

volume, If between the collisions spheres are in the state of inertial motion of con- 

stant velocity, then, in the following we shall call such a system of spheres, a free system. 
Regular motions in one-dimensional free system are, obviously, characterized by the 

following relations u. 
lk+ = Ujk, Vjk+= uikr lik = Uikaik, Sfk = Vfkt;k (2.5) 

let us assume that all spheres are identical, 1. e. 

mi = m, Ri = R (2.2) 
and move along a straight line between two walls, whose mean Separation is s, fight- 

hand side wall is fixed, while the left-hand wall oscillates harmonically as C? SinU!? 

where U and W are, respectively, amplitude and frequency. 
In this case (Fig, 2) the overall condition limiting the volume, will become (*) 

“) Size of spheres can be disregarded without loss of generality. 



Regular impulsive motions in a one-dimensional system 267 

Fig. 2 
Tk+l = rk + t,, + zl,k+l, 

%I; = l,,k 

i2.4) 

and we find that the condition of compatibility of motion of the first sphere in space 

where Tk is the time of commence- 

ment of the k th interval. 
Conditions of compatibility of motion 

of the first sphere in time and of the 

last sphere in space, will now be, respec- 

tively 

a sin @tk + slk = a sin wrk+t $_ h,k+l (2.5) 

is a derived one and is obtained by the summation of first equations of (1.2) over t , 

with (2.3) and (2.5) taken into account, 
Finally, equations of impact of extreme spheres on the walls can be written as 

fi (hk+ + m cos wr,& = Z)lk - m cos tiTk, R?z&@ = u,,k+l (2.6) 

and we can assume that the coefficient of restitution in the collision with a wall is the 

same as that in collision with another sphere. 

In the simplest periodic solution of the discrete boundary value problem formulated 

above we find, that the physical characteristics of motion of the spheres do not change 

from one interval to another and that the times at which two neighboring intervals com- 

mence, differ from each other by an amount equal to the period of motion 

T = 23-w /o (Y = 1,2. . .) 

where v is the multiplicity of the mode. In other words, 

Vik = Vi, Uik = Uic tik = ti, %ik = Tit Zk = (2nvFE + ‘p) / o (2.7) 

where Cp is the constant phase of impact of the first sphere on the left-hand wall. Now 
we shall proceed to find the mode of motion, noting first that comparison of (1.2) and 
(2.4) gives, together with (2. ‘7) 

ti + Zi = 2TCV J 0, Si = li (i = 1, . . . . . n) (2.8) 

Thus each sphere performs periodic oscillations of period T and amplitude si . Further, 

the following expressions for the times of forward and reverse motions are obtained: 

(2.9) 
Equations of conservation of momentum during the impact (first group of relations of 

(1.3) ) together with conditions (2.1) ,(2.2) and (2.7) show that the sum of the moduli 
of forward and reverse velocities is constant and the same for every sphere 

Vi + Ui = V (2.10) 
Let us represent the second group of relations of (1.3) as a linear, first order finite 

difference equation 
Wi-Wj,_l= - 

21-R 
TqP ( UJi P vi - 243 (2.11) 

We easily see that solution of this equation satisfying the second condition of (2.6) is 
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of the form 

(2.12) 

First equation of (2.6) will now yield the value of U 

v- I IfR 
n I-R - ao cos 9, (2.13) 

Finally, comparing relations (2.10) and (2.13) we arrive at expressions for the forward 
and reverse velocities 

-1 1 
vi = 

t 
--++--_]awoosq n 1-R 

(i = 1,. . ., nl (2.14) 

Ui = 
i 

1 R ___I++] 
n l--R aw cos cp 

Condition of the positiveness of forward velocities of spheres (z)i > 0) limits the phase 

of impact of the first sphere on the wall to -$IJ <cp < $l’T, Physically it means that, at 

the moment of impact, the wall should be moving in the positive (left to right) direction. 
Condition of the positiveness of reverse velocities (urnin = u, > 0) leads to the 

definition of a domain of existence of the simplest mode of motion,in terms of the coef- 

ficient of restitution 1 -I/n<R<i (2.15) 

from which we see that the domain narrows with the increasing number of spheres. 
Thus, velocities of forward motions diminish continuously, while velocities of reverse 

motions continuously increase from one sphere to another according to a linear law, pre- 

serving however at all times, the relation 

Fig. 3 

urnin > Qax tFitS 3, l 

We should note that the pattern of change 
of durations of forward and reverse motions 

of spheres along the system is, as seen from 
(2. 9), quite different, Free paths of the 

spheres si _ 2nv UiDi 
0 2, 

change in a parabolic manner and the mini- 
mum density of spheres (maximum free paths) 

is maintained near the fixed, right-hand wall. 

Simplest modes of motion of the considered 

system have a characteristic property, consisting of the fact that the impulse 

Ii=I=mv (2.03) 

transmitted by the spheres up to the fixed wall is constant, Expression 

gives the time of transmission of an impulse from one wall to the other. 
Taking into account relations (2.3) and (2. 9) we can further write expressions for the 

mean (over one period) force acting on the fixed wall (or on every 5 th sphere from the 
direction of the (t- I)-th sphere) and the kinetic energy of spheres, These are, respec- 

tively 

F= -$$ I = c(S---aainrp) (2.17) 
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(2.18) 

(I$_ w 
’ = $ R__-‘,~ ($ _ 1) (&.mR)r 

where C is definitely positive within the domain (2.15) and has the dimension of rigidity, 

Thus the considered system behaves, on the average, as a linear spring of rigidity 0, corn- 
pressed (stretched) by the amount equal to the distance occupied by the moving spheres. 

To make the simplest periodic mode in the system fully definable, it remains to deAni 
the phase Cp of impact of the first sphere on the wall. Equation defining Cp can be ob- 

tained from the condition of finiteness of the volume (2.3) which, after a simple sum- 
mation yields (“1 (2.49) 

where & is a positive magnitude increasing monotonously with J? within (2. IS). More- 

aver, we obviously have 

f, (fi) > fn (1 - 1 f n) = l/s @ - 4) 

Equation (2.19) allows solutions only if 

s / a < 11 + &c4* f, (fi)‘P (2.20) 

Conditions (2.20) and (2.15) together with the obvious inequality 

s/C=i (2.2i) 
fully define the domain of existence of simplest modes in the parametric space of the 

system, If we now introduce the notation 

sin r = S / a [1 + (2~~)~~~ (R)*]+*, 0 <r<%= f2.22) 

cos B = [1 + (2nv)yn (R,p, 0<8< M4 fl + (2nv,3 ‘/o’rt - 1pp 

then two basically different solutions of (2.19) possessing a physical meaning within the 
domain of existence can be represented by 

or = Y - 6, (Pa = a-C - (r + 6) @*2% 
Since by (2.2) siny P cos 6 and consequently y + 6 > $77 , phases C& and cpa of these 

modes vary over the nonimersecting intervals 

o<cPz<%G --‘/z~ < % < 9% G=Q 

We should note that the conditions of positiveness of the forward velocities of spheres 
is fulfilled automatically. Both modes approach each other if y -+ #lT and we reach the 
boundary of the domain of existence, given by (2.20). 

8, Stability of :lmplcrrt pariodio motion8 of the ly#torn, Weshall 
base OUT investigations of the stability of the simplest mode of motion found in the prea 
vious Section on the fact, that the motion retains its regularity in the presence of weak 
perturbations and can therefore be still described by the same nonlinear partial differ-i 
ence system, Varying the independent discrete variables of the problem, we arrive at 

“1 Relations (2.17) and (2.19) are given implicitly in [2], which also discusses quasi+&+- 
tic properties of the considered system. 



a linear homogeneous system whose general solution can be given by superimposing par- 

ticular solutions of the type 

Total number of particular, mutually independent solutions of (3.1) and the correspond- 
ing number of the eigen numbers Q is equal to ZK$, i. e. to the order of initial system. 

Set of the eigen numbers describes the rate of rise or decay of perturbations in the system. 
The necessary and sufficient condition for the motion to be stable under weak perturba- 

tions is, that for any particular solution (3.1) 

hoIds, 
(3.2) 

Dimensionless eigenforms xi, j#, , $i , $I * and Cr of mutually independent particular 
solutions (3, l), satisfy the following homogeneous linear difference system with variable 

discrete coefficients 

vi$i + u,5i + P~‘--12c7.j_~ + fW-lYi__j, = j.u@i* -F_, puiyj + pi-rq$_~ i- pG4G-r 

9i + Pi+_" = P Ni-~ .-I- %_;! (3,3) 

.xi + yi = xi-1 + pyi_1, xi + p&1 z R (ixi-l 4” y i) (3.4) 

and with the following boundary conditions: 

91 + WI* = o (P - Qt 2$l$rn -I- U&T% z= EL,*,* + %!& (3.5) 

Xl - Ry, = - n("i - R)23tvCTm(P, p& - R;t;, - 0 (3.6) 

Subsystem (3.3) is obtained by varying the variables under the condition of compati- 

bility of the motion in space and time (1,2), while (3. 4) is obtained by varying the vari- 

ables in the equations of impact (1.3). Boundary conditions (3.5) and (3.6) are stipu- 
lated by (2.4) and (2.6), respectively. 

To this we must add another unlocalized condition obtained by varying Equations 

(2.3) limiting the volume 

iH_M cos p, + 5 (V&j + z.zjz~) = 0 (3.7) 
+I 

or an equivalent expression 

(P - l)ao coscp = S$l + UlXl - PJ (vk" + WI,) (3.9 
derived from (2.5). 

+ Passing now to investigation of stability of the simplest modes of motion, we shall 

first define the aperiodic boundary of the region of stability, corresponding to I-r’= 1, In 
this particular case we have. from (3. 5), 

$1 f $I* = 0 

while (3.3) yields 
W#i + U$i = %*i* + !tivi* 4% + Ipi” = 0 

Efgenforms of variations of velocities are found to be Pro~rt~onal to corresponding 

velocities Xi /Vi = YJUi = COllSt 

and since pi = YiV:. - XjUi, the eigenform of variations of time intervals become 
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identically zero 

This implies that the system exhibits only a velocity drift. For /l = 1. -condition (3.7) 

divided by CJ# 0 will become 

coscp-kvf,(R)sincp- 0, or ;J$-$ = 0 (3.10) 

Thus the aperiodic boundary of stability P = 1 coincides with the boundary of the 
domain of existence y = $ll on which the periodic modes (2.23) merge. If l.L# 1, then 
the following variable substitution becomes possible 

y, = zi+l - zi9 Zi = l.kZt - Zi+l (3.11) 
First group of Equations (3.4) is now satisfied identically, while the second group, after 

some transformations. can he written as a linear, homogeneous, second order difference 

Similarly, after the following substitution of variables 

(3.12) 

(3.13) 

first group of equations (3.3) is satisfied identically, while the second group, after some 

transformations and division by U # 0, becomes a linear inhomogeneous system 

ti’ -22~6~+~6i~~=~ 2+1 C (1 -RR) (n - i + 1) (a+1 - pk) + 

+ (P-4 & 31 (3.14) 

Boundary conditions (3.5) and (3.6) and mutually equivalent relations (3.7) and (3.8) 
now become 

fi1 = 6, -$$-@+l+&= (p--l)“&&+t (3.15) 

P-I-R 1 -R 
Za-~R+l==l++ n2nv un cp, P+R 

- - zn+1+ pzfl l+R 
= 0 (3.16) 

a+i [(~&+1-+%+,-~~)+ 
i=l 

or +(&$ - 1 3 4) (pq - Zi+J] = 0 (3.17) 

~W)=$~(~*+pz1)+ 
+(P-l-~~)61-(p--1+$~~)zI (3.18) 

We see now that, since the coefficients of the homogeneous part of the system (3.14) 

are constant, the process of investigation of the simplest modes can be brought to com- 
pletion, for any n, by purely analytical means. 
(and naturally, for /A# 1). is 

Solution of (3.12) which. for l.l #p 

zi = Clhlt + &ha’ c ’ /&, a = P + J? f I% - l)(P - R”) 
1-l-R ) WV 

is found first, Here ?Jl, 2 are the eigen numbers of the system, while cl and cz are 
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constants definable in terms of U given in the boundary conditions (3,16). Expression 

for the discrete variable fii will, by virtue of coincidence of homogeneous parts of the 

system (3.12) and (3.14). conrain “secular” terms ti,’ and i*h, ’ ( k= 1,2) and will 
also depend on two constants definable in terms of CJ from conditions (3.15). Eigen 
numbers are given by equation obtained from the conditions (3.17) and (3.18), and when 
divided by O# 0, can be written as 

%a (CL) = 0 
where pa(U) is a certain 272 th degree polynomial. For ?2 = 1 say, this equation becomes 

cc2 - I2R + (1 - R2)2nv tgrplRp + R4 = 0 (3.20) 
from which we see that the oscillatory periodic boundary of stability x(/l =-I) has, in 

case of one sphere, the form 

2nv sin q = 0 

and can be attained within the domain of existence only in case of the mode, for which 

Cp = cp1 c 0. Quasiperiodic oscillating boundary N,,,@= expj$) coincides with the bound- 
ary 8 = 1 ofthe domain of existence (here and in the following j =c). 

Region of stability of the mode for which Cp = cpl when TZ = 1 is given, by 

1 (1 + IP)% 
Ian ~+-%&R(1-*R”) 

and it gradually narrows with increasing v . 
Now we shall turn our attention to a particular case, when one of the eigen numbers of 

the mode of motion is P = p . Eigen numbers corresponding to IA =@ are h = ha =R 
and the general solution of (3.12) contains a “secular” term 

4 = (C, + C,i)Ri (3.21) 

Boundary conditions (3.16) are satisfied only if c, = 0 and 

‘p=‘pl=o (3.22) 

Thus we have here the case of stability of a symmetric mode of motion, when the first 

s,phere hits the wall at an instant of its mean position. The following relation between 

the parameters of the system 
S/a= 2nvf, (R) (3.23) 

is necessary for the symmetric mode to exist. 
To obtain a clear idea of the stability of symmetric mode, we must COI-+ ute the 

remaining 272 -1 eigen numbers (first eigen number of the mode is l-l = RJ ~1). Let us 

therefore put Cp = Cp1 = 0 and M #J?‘. Then the system of equations (3.12) with bound- 

ary conditions (3.16) separates out of the general system and, consequently, the drift of 
velocity parameters can take place independently. Constants & and & in (3.19) satisfy 
the linear homogeneous system (3.16) and are, therefore, not simultaneously equal to 
eero. only if its determinant becomes zero, i. e. if 

hsn = h,n, for Pt~+[(p--)(P-RB)l”a=*=p~ 
Ir+ ~-r(lr--l)e-wa~l n (3.24) 

which cm also be given as 
p -(l + R)cosn (k/ n)j$ + R = 0 (3.25) 

(3.26) 

then the eigen numbers given by (3.25) are complex and their moduli are 
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IPI = R<l (3.27) 

If on the other hand the inequality (3.27) is not filfilled, then the roots of (3.25) are 
real 

and satisfy the estimate 

1 f<l < l/a (1 + R) + (‘/a (1 + W - RI”* = 1 (3.28) 

From this we see that perturbations of velocity characteristics of the symmetric mode 

does not lead to loss of stability. Instability can however be connected with the drift of 
temporal characteristics of the mode. To throw some light on the character of the tem- 

poral drift near the symmetric mode, let us put a1 = 0. Then the solution of homoge- 
neous equation (3.14) with boundary conditions (3.15) can be written as 

Further, substituting Expression (3.29) with Zi’ = 0 into (3.16) and after some transfor- 
mations and division by U# 0 we obtain 

(hi” - h,n) (h, - hJ = 0 
which shows at once that the eigen numbers of the temporal drift do not change. 

Consequently, the symmetric mode of arbitrary multiplicity V is always asymptotically 
stable for any number n of spheres, provided of course that conditions of existence in 

terms of the coefficient of restitution given by (2.15) are fulfilled. 

The problem considered by us which dealt with simplest periodic motions of 8 free 

system in a resnicted volume was, to a large extent,used to flluatr~te the mstlikl. Relo- 

tions however, formulated in the general statement of the problem of regular motions, 

allow us to investigate in a localized setting, the dynamics of a whole class of one-dimen- 

sional systems of mutually colliding spheres. 

Simplest motions of a free system under different boundary conditions can bearrplght 

in an analogous manner. For example, if both walls are rigidly connected and oscillate 
harmonically, then only the conditions (2.4) and (2,6) imposed on the motion of the rtth 

sphere will change, together with the restriction of volume, which in this case will become 

s = S:k + a.. + 8,& 

Simplest periodic mode characterized by the fact that 

can be found without difficulty. 

We can also relax the resaiction of volume and assume e. g, that the last sphere of 
our system (of an arbiaary mass) is acted upon by a constant force in the negative direc- 

tion, Generalization to the case of a wall oscillating according to any harmonic law is, 
in general, of trivial character. 

Other finite difference equations are obtained when more complex regular periodic 
motions of a free system are considered, provided that the pattern of motion is repeated 
over one or more intervals, If the perk&city extends over two intervals, then order of 
the system increases twofold. The system however remains linear and its solution can, 
basically, be obtained by analytic means. 

Finally. simplest periodic motion of constrained systems can be investigated when 
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Finally, simplest periodic motion of constrained systems can be investigated when the 

spheres move in some (e. g, homogeneous) field of force with the result that conditions 

(2.1) no longer hold. 
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The Poincar&Chetaev equations for holonomic mechanical systems have been written 

by Poincari 111 and generalized by Chetaev to the dependent variables case @I. The 

purpose of the present paper is to extend the mentioned method to the case of nonholo- 

nomic systems. 

1, Formulrtisn of the problem, Let us consider a nonholonomic mechani- 

cal system defined by the ?2 Poinca&Chetaev variables xl , . . . ,x, 12-J. which are 
subject, in real displacements, to the following $7 holonomic and Q nonholonomic con- 

straints a,& + * ' .+ asnx,' + a, = 0 (s = 1,. , ., p) (1.1) 

ct”~X~’ + . . . + c&J, + a, = 0 (Y = 1, . . ‘, q) (1.2) 

and in possible displacements, to Eqs. [3] 

as&r + . . * + azW~x, = 0 (s= 1,. I ., p) (1.3) 

&“&1+ . . . + avnbxn = 0 (v=l,...,q) (1.4) 

Here a,,, a,, avj, a, are functions of the time t and the variables ~1, . , . I xn ; ~1’ 

and 6x1 are the derivatives and variations of the variables Xi . The constraints (1.1) 


